If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2-30y+72=0
a = 2; b = -30; c = +72;
Δ = b2-4ac
Δ = -302-4·2·72
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-18}{2*2}=\frac{12}{4} =3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+18}{2*2}=\frac{48}{4} =12 $
| -5(g+5)+7(g+1)=-8 | | |5-6x/7|=16 | | 2x2−3=5x | | 9x+-19=2x-5 | | 3x^2+35=7x^2−4x | | -3(u+10)=3u+12 | | 25=q+27 | | f(2008)=24,500(0.84)^2008 | | 27=q+27 | | 3^(x-4)=2x | | 8(x-10)/2(x+60)=0 | | 7-3x/x=1/2 | | 6t2+7t-3=0 | | r-5/3r^2=1/3r^2+1/2r | | /4e=27 | | 6(t-2)=-3t-93 | | N+56=29n | | 3t+1/7=t+5/14+t-3/14 | | x-8=5( | | -4x+8x-9=4(x-5)-4 | | K=7m^2-m+4 | | 16-16=6x | | -6(v+2)+2v+6=6v+12 | | 4x2+32x=0 | | 1/4(k-1)=1 | | x2+(x+1)2=(2x−1)(x−3) | | 3n^2-13=10n | | −4(3x+2)−(x−7)=4 | | 4x2-13x-152=0 | | x2-21x+90=0 | | 5x²+7x-3=02 | | 6-(7-a)+3=10a-5 |